Lattice Structures from Planar Graphs
نویسنده
چکیده
The set of all orientations of a planar graph with prescribed outdegrees carries the structure of a distributive lattice. This general theorem is proven in the first part of the paper. In the second part the theorem is applied to show that interesting combinatorial sets related to a planar graph have lattice structure: Eulerian orientations, spanning trees and Schnyder woods. For the Schnyder wood application some additional theory has to be developed. In particular it is shown that a Schnyder wood for a planar graph induces a Schnyder wood for the dual.
منابع مشابه
$n$-Array Jacobson graphs
We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.
متن کاملDistributive Lattices from Graphs
Several instances of distributive lattices on graph structures are known. This includes c-orientations (Propp), α-orientations of planar graphs (Felsner/de Mendez) planar flows (Khuller, Naor and Klein) as well as some more special instances, e.g., spanning trees of a planar graph, matchings of planar bipartite graphs and Schnyder woods. We provide a characterization of upper locally distributi...
متن کاملULD-Lattices and ∆-Bonds
We provide a characterization of upper locally distributive lattices (ULD-lattices) in terms of edge colorings of their cover graphs. In many instances where a set of combinatorial objects carries the order structure of a lattice this characterization yields a slick proof of distributivity or UL-distributivity. This is exemplified by proving a distributive lattice structure on ∆-bonds with inva...
متن کاملJ ul 2 00 8 ULD - Lattices and ∆ - Bonds
We provide a characterization of upper locally distributive lattices (ULD-lattices) in terms of edge colorings of their cover graphs. In many instances where a set of combinatorial objects carries the order structure of a lattice this characterization yields a slick proof of distributivity or UL-distributivity. This is exemplified by proving a distributive lattice structure on ∆-bonds with inva...
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 11 شماره
صفحات -
تاریخ انتشار 2004